This question paper contains 5 printed pages]

		 •	 	 	
Roll No.				-	,

S. No. of Question Paper : 6716

CURRY ACMIN TO THE

Unique Paper Code : 32371501 HC

Name of the Paper : Stochastic Processes and Queuing

Theory

Name of the Course : B.Sc. (Hons.) STATISTICS

Semester

Duration: 3 Hours

Ouration: 3 Hours Maximum Marks: 75
(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Section I is compulsory.

Attempt four more questions, selecting two questions from each of the Sections II and III.

Use of simple calculator is allowed.

Section I

Attempt any five parts:

 $5\times3 = 15$

- (a) In the classical ruin problem, what will be the effect of reducing the unit of stake from one to half, on the probability of ruin of the gambler?
- (b) If $\{N(t), t \ge 0\}$ is a Poisson process, then show the autocorrelation coefficient between N(t) and N(t + s)

is
$$\sqrt{\frac{t}{t+s}}$$

P.T.O.

(a)

- Define convolution of two sequences $\{a_k\}$ and $\{b_j\}$, where $a_k = P(X = k)$ and $b_i = P(Y = j)$ with X and Y being two non-negative, integral valued random variables. Find the probability generating function of the sum of two independent random variables.
- Let $X(t) = A_0 + A_1t + A_2t^2$, where A_i , i = 0, 1, 2are uncorrelated random variables with mean 0 and variance 1. Is $\{X(t), t \in T\}$ covariance stationary ?
- Define the following: (e) *(i)* Closed set
 - Ergodic state.
- Let $\{X_n, n \ge 0\}$ be a Markov chain having state space $S = \{1, 2\}$ with transition matrix

$$\mathbf{P} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Find the stationary distribution of given t.p.m.

Let X_n , for n even, takes values +1 and -1 each with probability $\frac{1}{2}$, and for *n* odd, take values \sqrt{a} , \sqrt{a}

with probabilities $\frac{1}{1+a}$, $\frac{a}{1+a}$ respectively (a is real number > -1 and \neq 0, 1). Further let X_n 's be independent. Is $\{X_n, n \ge 1\}$ strictly stationary ?

Section II

Let a fair coin be tossed indefinitely. Find the probability that two that two or more consecutive heads will not occur in tosses. n tosses. Also find the generating function of this event. event.

- Let $S_N = X_1 + X_2 + ... + X_N$, where N has Poisson distribution with mean a. If X's have i.i.d. Bernoulli distribution with $P(X_i = 1) = p$ and $P(X_i = 0)$
 - = 1 p = q, then show that : S_N has Poisson distribution with mean ap. (i)
 - The joint distribution of S_N and N has the (ii) probability mass function

$$Pr(N = n, S_N = y) = \frac{e^{-a}a^n p^y q^{n-y}}{y! (n-y)!}$$
 for $n = 0, 1, 2, ...; y = 0, 1, 2, ... n$

(iii) Cov (N,
$$S_N$$
) = ap. 7,8

Obtain probability generating function of the random variable X having the mass function.

variable X having the state
$$p_k = \frac{1}{(2)} q^{(|k|-1)} (1-q); k = ..., -3, -2, -1, 1, 2, 3, ... \text{ where } 0 < q < 1.$$

Six boys Dev (D), Hemant (H), Jeet (J), Mohan (M), (b) Sunil (S) and Tejas (T) play the game of catching a ball. If D has the ball, he is equally likely to throw it to H, M, S and T. If H gets the ball, he is equally likely to throw it to D, J, S, T. If S has the ball, he is equally likely to throw it to D, H, M and T. If either J or T gets the ball, they keep throwing it to each other. If M gets the ball, he runs away with it. Obtain

(a) Define a persistent state and a transient state. Show that the state j is persistent iff

the transition probability matrix and classify the states.

$$\sum_{n=0}^{\infty} p_{jj}^n = \infty$$

P.T.O.

7,8

(b) Consider a Markov chain $\{X_n, n \ge 0\}$ with states 0 and I having transition probability matrix.

 $X_{n-1} = \begin{cases} 0 \left(1 - (1-c)p & (1-c)p \\ (1-c)(1-p) & (1-c)p+c \end{cases}; \quad 0$ with initial distribution $P\{X_0 = 1\} = p_1 =$ $P\{X_0 = 0\}$. Show that correlation coefficient Corr $\{X_{n-k}, X_n\} = c^k \text{ for } 0 < c < 1.$

Section III

- (a) Divide the interval [0, t] into a large number n of small intervals of length h and suppose that in each small interval, Bernoulli trials with probability of success λ^h and with probability of failure $(1 - \lambda h)$ are held. Show that the number of successes in an interval of length t is a Poisson process with mean λt . State the assumptions you make.
- Show that for the linear growth process, the second (b) moment $M_2(t)$ satisfies the differential equation $M_2(t)$ = $2(\lambda - \mu)M_2(t) + (\lambda + \mu) M(t)$. Further, show that variance is

Var
$$(X(t)) = i \frac{\lambda + \mu}{\lambda - \mu} e^{(\lambda - \mu)t} (e^{(\lambda - \mu)t} - 1); \lambda \neq \mu$$

where i is the population size at t = 0.

- Define a Poisson process. State the postulates which a count $\frac{1}{2}$ (a) which a count process will be a Poisson process.
 - Show that random selection from a poisson process with (*i*) process yields a Poisson process.

- If $N_1(t)$, $N_2(t)$ are two independent Poisson processes with parameters λ_1 and λ_2 respectively, then obtain the distribution of $N(t) = N_1(t) - N_2(t)$.
- (b) Describe the classical ruin problem. Derive an expression for the expected duration of the game, which is finite. Obtain the limiting expression as $a \to \infty$.

(5)

7,8

- (a) In the case of (M/M/1); (N/FCFS) queuing model, derive the steady-state probability distribution and obtain the expressions for :
 - Expected number of customers in the system (i)
 - Expected number of customers in the queue (ii)
 - Expected waiting time in the system. (iii)
 - A super market has a single cashier. During the peak (b) hours, customers arrive at a rate of 20 customers per hour. The average number of customers that can be processed by the cashier is 24 per hour. Calculate:
 - (*i*) the probability that the cashier is idle
 - the average number of customers in the queue (ii)
 - the average time a customer spends in the (iii) system. 7,8

6716